There is more to electronic e-waste than carelessly discarded batteries. The terminology includes all digital devices and appliances with the potential to be tossed into a landfill, including kitchen microwave ovens as well as old computers. The problem is growing, and not limited to wealthier consumer-oriented countries. Recycling and re-using Austin e-waste both responsibly and profitably is a common goal for many Texas municipalities.
Dealing with this issue has become more urgent because of the numbers of people worldwide who can now afford to purchase and use them. Broken electronics are rarely repaired because newer, improved versions are constantly being offered to consumers, making maintenance irrelevant. Although the extreme toxins they contain consistently make headlines, they are not the only reason for proper disposal.
Within discarded appliances are a host of precious metals. The old cathode ray computer displays are now phased out, but any device containing a printed circuit also holds a small but significant amount of platinum, palladium, gold, and silver. Substances with generally unfamiliar names such as gallium and indium play an important role in flat-screen technology and other innovations, and all have considerable after-market value.
Although melting down unused cell phones to extract valuable metals does not make sense individually, in large quantities the process produces more refined metal than the original ore that bore it. Costly and comparatively rare elements are only a fraction of the metals used during manufacturing a mobile phone, which also contains copper and tin. The plastics used to create housings can also be partially reused.
The key is collecting and processing those discarded items profitably. Individuals routinely do this type of work, which can be handled more efficiently by a business employing several people. In most locales it begins by separating individual components manually, removing the processors and microchips from their original frames. The remaining materials are then run through a specialized shredder that makes further separation possible.
After having been re-mined, most of the remainder then sold back to manufacturing firms for the creation of new products. Manufacturers benefit because they do not have to extract as much basic raw material from the earth, and consumers also enjoy somewhat lower prices as a result. Disposing of personal electronic waste responsibly is only part of the overall scenario, which has a predictably darker side.
As the mound of electronic debris grows exponentially each year, recycling efforts have increased, but cannot keep pace with the enormous quantities that are being consistently created. The health hazards they pose are well-documented, and include lead and mercury poisoning. Exposed children experience developmental problems, and adults often suffer from respiratory and brain issues.
The extent of this type of contamination is difficult to accurately track using conventional processes. The issue exists because of current economic and societal realities, and can be solved in a similar manner. Although it is urgent to remind people of the health hazards that uncontrolled e-waste dumping produces, the most practical solution for the long term is further development of business that profits from recycled electronics.
Dealing with this issue has become more urgent because of the numbers of people worldwide who can now afford to purchase and use them. Broken electronics are rarely repaired because newer, improved versions are constantly being offered to consumers, making maintenance irrelevant. Although the extreme toxins they contain consistently make headlines, they are not the only reason for proper disposal.
Within discarded appliances are a host of precious metals. The old cathode ray computer displays are now phased out, but any device containing a printed circuit also holds a small but significant amount of platinum, palladium, gold, and silver. Substances with generally unfamiliar names such as gallium and indium play an important role in flat-screen technology and other innovations, and all have considerable after-market value.
Although melting down unused cell phones to extract valuable metals does not make sense individually, in large quantities the process produces more refined metal than the original ore that bore it. Costly and comparatively rare elements are only a fraction of the metals used during manufacturing a mobile phone, which also contains copper and tin. The plastics used to create housings can also be partially reused.
The key is collecting and processing those discarded items profitably. Individuals routinely do this type of work, which can be handled more efficiently by a business employing several people. In most locales it begins by separating individual components manually, removing the processors and microchips from their original frames. The remaining materials are then run through a specialized shredder that makes further separation possible.
After having been re-mined, most of the remainder then sold back to manufacturing firms for the creation of new products. Manufacturers benefit because they do not have to extract as much basic raw material from the earth, and consumers also enjoy somewhat lower prices as a result. Disposing of personal electronic waste responsibly is only part of the overall scenario, which has a predictably darker side.
As the mound of electronic debris grows exponentially each year, recycling efforts have increased, but cannot keep pace with the enormous quantities that are being consistently created. The health hazards they pose are well-documented, and include lead and mercury poisoning. Exposed children experience developmental problems, and adults often suffer from respiratory and brain issues.
The extent of this type of contamination is difficult to accurately track using conventional processes. The issue exists because of current economic and societal realities, and can be solved in a similar manner. Although it is urgent to remind people of the health hazards that uncontrolled e-waste dumping produces, the most practical solution for the long term is further development of business that profits from recycled electronics.
No comments:
Post a Comment